Rank Aggregation: Together We're Strong
نویسندگان
چکیده
We consider the problem of finding a ranking of a set of elements that is “closest to” a given set of input rankings of the elements; more precisely, we want to find a permutation that minimizes the Kendall-tau distance to the input rankings, where the Kendall-tau distance is defined as the sum over all input rankings of the number of pairs of elements that are in a different order in the input ranking than in the output ranking. If the input rankings are permutations, this problem is known as the Kemeny rank aggregation problem. This problem arises for example in building meta-search engines for Web search, aggregating viewers’ rankings of movies, or giving recommendations to a user based on several different criteria, where we can think of having one ranking of the alternatives for each criterion. Many of the approximation algorithms and heuristics that have been proposed in the literature are either positional, comparison sort or local search algorithms. The rank aggregation problem is a special case of the (weighted) feedback arc set problem, but in the feedback arc set problem we use only information about the preferred relative ordering of pairs of elements to find a ranking of the elements, whereas in the case of the rank aggregation problem, we have additional information in the form of the complete input rankings. The positional methods are the only algorithms that use this additional information. Since the rank aggregation problem is NP-hard, none of these algorithms is guaranteed to find the optimal solution, and different algorithms will provide different solutions. We give theoretical and practical evidence that a combination of these different approaches gives algorithms that are superior to the individual algorithms. Theoretically, we give lower bounds on the performance for many of the “pure” methods. Practically, we perform an extensive evaluation of the “pure” algorithms and ∗Institute for Theoretical Computer Science, Tsinghua University, Beijing, China. [email protected]. Research performed in part while the author was at Nature Source Genetics, Ithaca, NY. †Institute for Theoretical Computer Science, Tsinghua University, Beijing, China. [email protected]. Research partly supported by NSF grant CCF-0514628 and performed in part while the author was at the School of Operations Research and Information Engineering at Cornell University, Ithaca, NY. combinations of different approaches. We give three recommendations for which (combination of) methods to use based on whether a user wants to have a very fast, fast or reasonably fast algorithm.
منابع مشابه
Deterministic Algorithms for Rank Aggregation and Other Ranking and Clustering Problems
We consider ranking and clustering problems related to the aggregation of inconsistent information. Ailon, Charikar, and Newman [1] proposed randomized constant factor approximation algorithms for these problems. Together with Hegde and Jain, we recently proposed deterministic versions of some of these randomized algorithms [2]. With one exception, these algorithms required the solution of a li...
متن کاملStudy on Meta-Learning Approach Application in Rank Aggregation Algorithm Selection
Rank aggregation is an important task in many areas, nevertheless, none of rank aggregation algorithms is best for all cases. The main goal of this work is to develop a method, which for a given rank list finds the best rank aggregation algorithm with respect to a certain optimality criterion. Two approaches based on meta-feature description are proposed and one of them shows promising results.
متن کاملMultivariate Spearman’s rho for rank aggregation
We study the problem of rank aggregation: given a set of ranked lists, we want to form a consensus ranking. Our main contribution is the derivation of a nonparametric estimator for rank aggregation based on multivariate extensions of Spearman’s ρ, which measures correlation between a set of ranked lists. Multivariate Spearman’s ρ is defined using copulas, and we show that the geometric mean of ...
متن کاملStochastic Rank Aggregation
This paper addresses the problem of rank aggregation, which aims to find a consensus ranking among multiple ranking inputs. Traditional rank aggregation methods are deterministic, and can be categorized into explicit and implicit methods depending on whether rank information is explicitly or implicitly utilized. Surprisingly, experimental results on real data sets show that explicit rank aggreg...
متن کاملDifferentially Private Rank Aggregation
Given a collection of rankings of a set of items, rank aggregation seeks to compute a ranking that can serve as a single best representative of the collection. Rank aggregation is a well-studied problem and a number of effective algorithmic solutions have been proposed in the literature. However, when individuals are asked to contribute a ranking, they may be concerned that their personal prefe...
متن کامل